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Introduction 

 Dynamic number of nodes and edges in many emerging 

applications, for example: 

 Hyperlink structure of the World Wide Web 

 Relationship structures in online social networks 

 Connectivity structures of the Internet and overlays 

 Communication flow networks among individuals 

 Time-Evolving Graph or TEG: 

 A sequence of snapshots of a graph as it evolves over the time 
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Need New Approaches for TEG 

In contrast to middle size and static graphs: 

1. An additional dimension, namely time 

2. Huge size in many modern domains 

 Facebook has about 800 million vertices and 104 billion edges 

3. The additional temporal dimension causes the data size to 

increase by multiple orders of magnitude. 

We study three important problems about TEGs: 

 Distribution on Cluster Computers 

 Reachability Query 

 Pattern Matching 
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BSP model and Vertex-centric graph 

processing 
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 BSP (Bulk Synchronous Parallel) model 

 

 

 

 

 Vertex-centric graph processing 

 Each vertex of the data graph is a computing unit. 

 Each vertex initially just knows its own label and its outgoing edges. 

 Pregel, Giraph Apache, GPS 

 

Communication 

Super Step Super Step Super Step 

Communication 

M. Felice Pace, BSP vs MapReduce. Proceedings of the 12th International Conference on Computational Science (ICCS '12) 



TEG distribution on Clusters 

 two contradictory goals: 

 Minimizing communication cost among the nodes of the cluster.  

 Maximizing node utilization.  

 A trade-off between two extremes: 

 Assigning the vertices randomly 

 Partitioning the graph into connected components 
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TEG distribution on Clusters 

 More partitions than the number of the compute nodes 

 Dynamic repartitioning of sub-graphs when changes pass a 
certain threshold related to the connectivity and structure of 
the sub-graphs 

 Incremental reallocation of a node in order to reduce the 
communication cost 
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Pattern Matching 
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 There are different paradigms for pattern matching:  

 Sub-graph Isomorphism (NP-Complete) 

 Graph Simulation (Quadratic) 

 Dual Simulation (Cubic) 

 Strong Simulation (Cubic) 
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Graph Dual Simulation 
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Graph Strong Simulation 
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Distributed Graph simulation 
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Distributed Graph simulation 
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Distributed Graph simulation 
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The Second Superstep 
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Distributed Graph simulation 
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The Third Superstep 
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Preliminary results 

Source of the graph: 

http://snap.stanford.edu/data/ 

Graph Synthesizer: 

http://projects.skewed.de/graph-tool/ 

Number of vertices in the pattern: 20 



Pattern Matching in TEGs 
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 We borrow the idea of result graphs from [1]. 

 Lists for requests of insert and delete, and time stamps for 
snapshots of the graph. 

 Delete commands can only diminish the result graph 

 Insert commands will expand previous result graph. 

 Saving Result Graphs for some of the snapshots of the graph 

[1] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu, “Incremental graph pattern matching,” in Proceedings of the 2011 ACM SIGMOD 

International Conference on Management of data, ser. SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 925–936. 

Diff(G2,G1):= 

Inserts/Deletes 

RG1 RG2 RG3 

Diff(G3,G2):= 

Inserts/Deletes 
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